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Validation of Kernel-Driven Semiempirical Models for
Global Modeling of Bidirectional Reflectance

Baoxin Hu, Wolfgang Wanner, Xiaowen Li, and Alan H. S-trahler

The serniernpirical, kernel-driven Arnbmls BRDF m~dti?ions to a common geometry but also to provide sur-

(Wanner et aL, 1995) was developed for correcting

and studying view and illumination angle eflects of a

wide variety of land covers in remote sensing applica-

tions. This model, also scheduled for use in producing

a global bidirectional reflectance distribution function

and albedo data product from EOS-MODIS and MISR

data, is validated in this paper by demonstrating its

ability to model 27 different muitiangular data sets

well, representing major types of land cover. The se-

lection of the kernels used in the model is shown to re-

late to land cover type, and the inversion accuracy to

be good in nearly all cases: the correlation coefficient

between modeled and observed reflectance is larger

than 0.9 jor about half of the data sets and larger

than 0.75 in all but one case where the observations

are irregular. The average root mean squared error of

the inversions is 0.03~. A new kernel modeling the

sun zenith angle dependence of multiple scattering is

introduced and shown to improve fits for dense vegeta-

tion. Operation of the A mbrals model is demonstrated

by applying it to an ASAS image on a per-pixel basis.

INTRODUCTION

face physical parameters and the boundary condition

for radiative transport in the coupled atmosphere-
earth system.

At the same time, global change research intro-

duces new requirements into the modeling of the bidi-

rectional reflect ante of vegetation. Studies of the
BRDF properties of vegetation have for the most part

been carried out over thematically homogeneous sur-

faces and for a limited variety of land covers. The

BRDF models developed also usually assume homo-

geneity of the land cover. However, to allow frequent

global coverage the satellite sensors used in global

change research typically do not possess high spatial

resolution. For example, the U.S. National Oceano-

graphic and Atmospheric Administration (NOAA) Ad-

vanced Very High Resolution Radiometer (.4VHRR),

commonly used in land surface monitoring, has a spa-

tial resolution of 1.1 km at nadir. The Moderate

Resolution Imaging Spectroradiometer (MODIS) to

be launched in mid-1998 on the EOS-AM-1 platform,

which will be the primary Earth Observing System

(EOS) sensor for observations of terrestrial dynam-

ics (Running et al., 1994), is a 36-channel radiometer

covering 0.415–14.235 pm in wavelength with a spa-

tial resolution ranging from 250 m to 1 km at nadir,

With the increasing use of coarse and medium-resolutio~epending on the band. For sensors of this kind, a

off-nadir viewing sensors producing reflectance data given Pixel will frequently contain a heterogeneous

for global monitoring, analysis of the BRDF (Bidi- mixture of bare soil and vegetation canopies, or a

rectional Reflectance Distribution Function) of each mixture of spatially distinct types of vegetation with

pixel is becoming more and more important. The different structural and optical properties. Because of

BRDF can not only be used to compare observations the global coverage provided, a very large number of

obtained at different angles or standardize observa- different surface types will be viewed. Therefore, it is

necessary to develop BRDF models of a type that can
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quirements very well is the semiempirical kernel-driven very rapidly invertible. Their number of parame-

type originally suggested by Roujean et al. (1992) and

later developed further by Wanner et al. (1995a) in

form of the Ambrals BRDF model (Wanner et al.,

1997). This model type has been successfully applied

to a variety of remotely sensed data sets including

AVHRR data (Leroy and Roujean, 1994; Li et al.,

1996; Ruiz de Lope and Lewis, 1997) to correct for

surface BRDF effects, for example in the vegetation

index. The Ambrals model will also be used in gener-

ating the global MODIS BRDF and albedo standard

data product (Strahler et al., 1996; Wanner et al.,

1997).

Previously, only limited validation of the mathe-

matical expressions used in the Ambrals model has

been published (Strahler et al., 1995; Wanner et al.,

1995b; Hu et al., 1996; Wanner et al., 1997). In this

paper, we now present more extensive validation of

the Ambrals BRDF model using various bidirectional

reflectance data collected over a wide variety of sur-

face types. Since currently almost no BRDF data sets

for heterogeneously mixed land surfaces are available,

validation is restricted to homogeneous cover types

even though it is expected that the models will dis-

play their strength more obviously for mixed pixels.

Data for mixed scenes will be more readily available

in a few years.

MODELING BIDIRECTIONAL

REFLECTANCE WITH KERNEL-DRIVEN

MODELS

Kernel-Driven BRDF Models

In operational processing, the physical approach

to BRDF modeling is problematic since it still is

neither flexible enough nor computationally simple

enough to allow global rapid inversions on a regular

basis. It has therefore been the strategy for the three

largest planned operational BRDF and zdbedo prod-

ucts, those from MODIS, the EOS Multi-Angle Imag-

ing Spectroradiometer (MISR) (Diner et al., 1991),

and the Polarization and Directionality of the Earth’s

Radiation instrument (POLDER) (Deschamps et al.,

1994; Leroy et al., 1997) to use linear or semilinear

semiempirical BRDF models. These models retain

some physical interpretation while being highly ca-

pable of adapting to many BRDF shapes and being

ters is small, usually three. MISR will be using the

semiempirical RPV BRDF model developed by Rah-

man et al. (1993) in a form modified by Martonchik

(Engelsen et al., 1996), POLDER will use the Rou-

jean kernel-driven model (Roujean et al., 1992), and

MODIS will rely on the kernel-driven semiempirical

Ambrals BRDF model (Wanner et al., 1995a, 1997)

that will here be validated, and will also run the em-

pirical modified Walthall model ( Walthall et al., 1985;

Nilson and Kuusk, 1989) in parallel. Ambrals stands

for: Algorithm for MODIS bidirectional reflectance

anisotropy of the land surface.

In the kernel-driven semiempirical approach, the

BRDF is modeled as a weighted sum of a volume

scattering function and a surface scattering function

(called kernels), and a constant (Roujean et al., 1992).

These kernels are derived from approximations to

physical BRDF models, so they retain a physical mean-

ing. In model inversion, the weight given to each ker-

nel is determined empirically by fitting to the multi-

angular observations made. Thus, it is the weights of

the semiempirical kernels that are retrieved, charac-

terizing the balance between volume and geometric

scattering in the possibly mixed scene viewed.

Volume and surface scattering kernels are derived

from physical radiative transfer models and geometric

optical models by simplifying them to the following

format by reasonable approximations:

R(ei, ov, @;A) = c~(A)k(e~,8v, @) + CJA), (1)

where c1 and C2are constants containing physical pa-

rameters, R is the modeled value of the bidirectional

reflectance of surface objects, and k is the kernel func-

tion dependent only on viewing and illumination ge-

ometry; 0; and @v are illumination and viewing zenith

angles, @ the relative azimuth, and A the wavelength.

If after approximations the kernel k still contains pa-

rameters, they are set to a typical value that may

vary from one kernel to the next.

A complete kernel-driven semiempirical model has

the form

R(6~,6V, 4; A) = fi..(~) + f.wo(~)kg..(~z, Ov, 4)

+jvo[(~)ko.[(~z,@v,4)> (2)

where the quantities k~~~and k.”ol are the geometric-
optical surface-scattering kernel and the radiative-

transfer volume-scattering kernel, and the factors ~~.O
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and ~VO[are their respective weights. The term ~~~~

is the contribution of isotropic scattering.

The Ambrals BRDF Model

The original Roujean model used a kernel de-

rived from a single-scattering radiative transfer the-

ory by Ross (1981), called the Ross-thick kernel, and

a geometric-optical kernel for rectangular protrusions

(Roujean et al., 1992). The latter kernel was found

not to fit some cover types well, especially dense for-

est canopies (Roujean et al. ? 1992). The Ambrals

BRDF model makes use of an improved set of ker-

nels. The Ross-thick kernel, derived for large val-

ues of the effective scattering leaf area index, is also

used, but alternately an approximation for low effec-

tive values of the leaf area index, called the Ross-thin

kernel, is available (Wanner et al., 1995a). Which of

the two kernels to use for a given inversion is decided

a priori, is based on previous experience, or k de-

cided such that the kernel chosen produces the least

root mean squared error ( RMSE) in inversion. Sim-

ilarly, the Ambrals model allows for two alternate

choices for the geometric-optical kernel, derived for

different types of scenes (Wanner et al., 1995a). One,

called the Li-sparse kernel, is an approximation to the

geometric-optical mutual shadowing model by Li and

Strahler ( 1992) for sparse ground objects, where the

BRDF is mainly governed by shadow casting. The

second geometric kernel, the Li-dense kernel, is deter-

mined by the bright sunlit object faces mainly visible

due to mutual shadowing effects in dense ensembles

of ground objects, for example dense forests.

The Ambrals model, as it is to be used for generat-

ing the MODIS BRDF/albedo data product, thus oc-

curs in four variants that are used to optimize the in-

version. These are the Ross-thin /Li-sparse, the Ross-

thick/Li-sparse, the Ross-thin/Li-dense, and the Ross-

thick/Li-dense modes of the model. The Li-sparse

kernel is formulated for round crowns, the Li-dense

kernel has prolate crowns with a diameters ratio of
2.5. Both kernels model crowns where the mean dis-

tance from the ground to the lower edge of the crown

is half of the crown height.

Error Functions Used

Like all linear models, the Ambrals BRDF model

can be inverted analytically through matrix inver-

sion (Lewis, 1995), avoiding costly numerical inver-

sion problems. In each wave band, a set of model pa-

rameters is determined through minimization of an

error function,

Here, N is the number of observations, nP the num-

ber of parameters of the model, Rob” and RmOdelare

observed and modeled reflect antes, respectively, and

TVj is a weighting factor that may be chosen to give

different weights to different observations if desired.

In the absence of qualifying knowledge, Wj is com-

monly specified as unity. For a relative error measure,

IVj = Rj. An absolute error measure generally en-

sures best accuracy for large values of the reflectance,

which dominate albedo, but does not put a strong em-

phasis on small reflectance that may be of particu-

lar interest for some applications. A relative measure

of error does not show this latter problem, but since

larger absolute deviations are allowed for large values

of the reflectance, albedo derived from the BRDF is

likely to possess a larger absolute error as well.

A similar problem exists when attempting to find

a function for minimizing the error in several wave

bands simultaneously. The weight given to the er-

ror made in each band may be determined either to

be equal, to favor bands with small albedos by in-

troducing a weight in each band proportional to the

size of the albedo, or by weighting according to the

proportion of radiation present in each band. In this

study, the RMSE determined for a specific data set

and model is given by

(4)

with both Wy and wi presently set to unity, the lat-

ter determining the contribution of each band to the

selection of the best-fitting kernel combination of the

Ambrals model; nb is the number of wave bands.



100 Hu, Wanner, Li and Strahler

DATA SETS USED

As mentioned earlier, kernel-driven BRDF models

have been developed for applications at the global

scale. They are designed to describe the bidirec-

tional reflectance of mixed land cover types. But be-

fore more measurements for heterogeneous scenes are

available, it is necessary and useful to validate the

model using field-measured data over a single land

cover type. A number of such data sets are available

as detailed below, covering a large variety of land

cover types with variations, for example, in canopy

coverage and differences in leaf area index (LAI). All

of these data sets are available for several different

sun zenith angles. Some studies (e.g., Engelsen et al.,

1996) have also used numerical BRDF forward mod-

eling to explore model properties, but due to possi-

ble similarities in the mathematical expressions used

in the modeling of both the forward and the inverse

model their use for validation is limited. Table 1 sum-

marizes basic properties of the data sets that were

used.

1) BRDF data sets by Kimes

Kimes (1983) collected a series of multi angular data

sets of a plowed field, a corn field, orchard grass and a

grass lawn with O, 25, 50 and 97 percent of vegetation

cover, measured near Beltsville, Maryland. In situ

measurements made in Northern Africa of three land

covers with low and two land covers with high vege-

tation coverage were reported by Kimes et al. (1985).

They are annual grassland, hard wheat, steppe grass,

irrigated wheat, and soybean. Their corresponding

coverage is 4, 11, 5, 70 and 90 percent, respectively.

Helicopter measurements were performed on two kinds

of high coverage forest (70 and 79 percent) dominated

by pine trees in one case and hardwood trees in the

other, both situated in Virginia (Kimes et al., 1986).

Data collected in the red (580–680 nm) and the near-

infrared (730–1 100 nm) bands were used in this work,

available for either three or four sun zenith angles de-

pending on the case. The view zenith angles range

from 0° to 75° in increments of 15°. Relative azimuth

angles varied from 0° to 345° in increments of 4<5°.

2) Soybean data by Ranson

Three bidirectional reflectance data sets were col-

lected by Ranson et al. (1985) over a commercial soy-

bean field in West Lafayette, Indiana, on three dates

during the summer of 1980 with an Exotech model

100 radiometer in four spectral bands (500-600, 600-

700, 700-800, and 800-1100 rim). The view zenith

angles observed at were 0°, 7°, 22°, 30°, 45° and 60°.

View azimuth angles ranged from 0° to 315° in steps

of 45°. On the three dates (July 18, July 25, and

August 27), Vegetation coverage was 72, 83 and 99

percent.

3) Boreal forest data by Deering

Deering et al. (1995) measured the bidirectional re-

flectance of Old Jack Pine, Old Black Spruce and

Aspen at the BOREAS forest in Canada on dates

May 31, June 7 and July 21. The instrument used

was PARABOLA, which allows to acquire radiance

data for nearly the complete sky- and ground-looking

hemispheres. Data are post-processed and binned to

intervals of 15° in zenith angle and 30° in azimuth
angle. In this study, data for the red (0.650-0.670

nm) and the near-infrared (810–840 nm) bands were

used.

4) Soil data by Irons

Three data sets of a bare soil multiangular reflectance

were collected by Irons et al. (1992) in 1989 using the

MMR instrument on the ground and for several dif-

ferent sun zenith angles. The three data sets differ

in the surface roughness of the soil, which was pro-

duced by working the soil with different agricultural

machines. Surface roughnesses were 1.2, 2.6, and 3.9.

The view zenith angle ranged from 0° to 70° in in-

tervals of 10° and the view azimuth angle from 0° to

180° in intervals of 45°.

5) Grassland data from FIFE

The reflectance of a grassland at the FIFE study site

located south of Manhattan in the Konza Prairie of

northeastern Kansas was measured on July 11 and

October 9, 1987 using MMR (cf. Walthall and Mid-

dlet on, 1992). Vegetation was primarily a mixed grass
including several species. View zenith angles observed

were 0°, 20°, 35°, and 50°, the solar zenith angle was

around 20° for one data set and around 55° for the

other.

6) Airborne POLDER data

.4n airborne version oft he P OLDER instrument was

used to collect mult iangular reflect ante data in the

area of La Crau, France, in June, 1991 (Leroy et
al., 1996). The area is covered by a wide variety

of vegetation types, such as sorghum, sunflower, veg-

etable, vine and grass. After registration of several

P OLDER, imaaes. data with various view and illumi-
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nation angles were obtained for the red (630–670 nm) taining the Ross-thick kernel fit the bidirectional re-

and near-infrared (830–8 70 nm) wave bands. flectances better than those using the Ross-thin ker-

nel.

EVALUATION OF MODEL PERFORMANCE A third type of canopy is represented by dense

RMSES of Inversion and Kernel Selection

To evaluate the four available kernel combinations

for the Ambrals model, each was fitted to each of the

multiangular data sets and the RMSES and correla-

tion coefficients between the predicted and observed

reflectance were computed. Inversions were carried

out simultaneously for all available bands, i.e., each

kernel combination was required to not only fit the

reflectance in each band well, but also to minimize

the error across bands (mostly two, red and near-

infrared) according to equation (4) at the same time.

The results show that nearly all data sets are fit well

by at least one of the model variants.

This may be seen in Figure 1, which shows the

RMSE for each model variant for selected different

land cover types. As expected, different kernel com-

binations produce the best fit (the lowest RMSE) for

different types of land cover.

Cases with bare soil or sparse vegetation, such

as the barren plowed field, the bare soil (Irons), the

annual grass (coverage 4 percent), or the hard wheat

(coverage 11 percent) are fitted better by the Ambrals

variants with the Li-sparse kernel than those with the

Li-dense kernel. For these land cover types, shadow-

casting of clumps of soil and vegetation mainly affects

the bidirectional reflectance. Thus surface scattering

dominates the scattering of solar radiation. Due to

the smallness of the contribution due to volume scat-

tering, the selection of volume scattering kernel has

little influence. Of the two surface scattering kernels,

the Li-sparse kernel is chosen over the Li-dense ker-

nel because it is the one that most strongly derives

its shape from effects of shadow-casting.

For horizontally uniform vegetation canopies with

many leaves, the type most different from bare soil

and sparse vegetation, results are appropriately dif-

ferent. Examples shown in Figure 1 are the orchard

grass (LAI is 1.0) and the irrigated wheat (LAI is 4.0).

Their canopies tend to be continuous and thus vol-

ume scattering is dominant. Whether the Li-sparse

or the Li-dense kernel is selected does not make much

difference in these cases. But the model variants con-

vegetation composed of individual crowns, where mu-

tual shadowing in viewing and illumination direction

is the dominant process. In such cases, only illumi-

nated tops of crowns are visible at large view zenith

angles. Shadows cast by the crowns are mostly invis-

ible due to mutual overlapping in the view direction,

and no background is visible, which makes this case

different from the case of sparse vegetation, where the

shadows remain visible. As expected, model variants

using the the Li-dense kernel are found to provide

the best fit to the dense forest canopy, such as the

hardwood forest data set.

But for the sparser old black spruce stand, shown

in Figure 1 in contrast to the hardwood forest, both

mutual shadowing of crowns and shadow casting play

a role. Thus the model variants with the Li-sparse

kernel fit this data set a little better than those with

the Li-dense kernel, although all four fit it well.

For some land cover types, all four model variants

fit at almost the same level. Examples are the soy-

beans (data from Kimes and Ranson), the grassland

(FIFE) and the sunflowers (POLDER). This maybe

because the respective canopies do not display strong

bidirectional reflectance properties for the given an-

gular samplings.

From this analysis it is obvious that the BRDFs

of different land cover types are best represented by

different kernels in the Ambrals model. No data set

is fitted with an RMSE of more than 0.046. The

pattern given by which kernels fit well and which do

not in a particular case can indicate basic charac-

teristics of the observed surface, information that is

potentially useful in land cover classification since it

is different from the spectral information (for exam-

ple the sparse/dense distinction for forests). What

is retrieved is not merely the parameters required for

a reasonable fit, but the kernel choice also reveals

whether one particular approximation made or the

other is more suitable for describing the BRDF. Such

information would not be obtained in this way from a

single BRDF model variant, especially since all Am-

brals kernel combinations produce fits RMSES in a

seemingly reasonable range.
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Principal Plane and Principal Cone Fits

This leads to an important question regarding the

RMSES of the four Ambrals kernel combinations plot-

ted for each data set in Figure 1. Do the relatively

moderate differences seen in the value of the RMSE

between the four model variants signify relevant dif-

ferences in the modeled reflectance? To answer this

question, Figure 2 shows principal plane and princi-

pal cone plots of the modeled reflectance for the best-

fitting and the worst-fitting kernel combinations, and

the observed data, for a few cases and in the red and

near-infrared wave bands. These cases were selected

to have similar solar zenith angles of observation and

to represent major types of vegetation, bare, sparse,

dense and forest.

The bare soil and very sparse annual grass data

sets were best represented by models containing the

Li-sparse kernel. Figure 2 shows this fit and, for com-

parison, that obtained when using the Li-dense kernel

instead. Obviously, employing the Li-sparse kernel

provides a better fit in the hotspot region. For the

annual grass, the azimuthal dependence of reflect ante

on the principal cone is not modeled too well by the

model variants containing the Li-dense kernel.

The plots for the dense irrigated wheat show that

the model variant based on the Ross-thick kernel fit

the azimuthal change of reflectance on the principal

cone much better than those containing the Ross-thin

kernel, use of which leads to a clear underestimation

of the reflectance.

Finally, the plots for the hardwood forest show

that while both the best-fitting model variant, Ross-

thick/Li-dense, and the worst-fitting model, Ross-

thin/Li-sparse, have some problems with this data

set, the fits provided by the former are better than

those of the latter, especially on the principal plane

in the near-infrared.

Figure 2 serves to demonstrate that not only do

different types of land cover respond to different ker-

nel combinations used in the Ambrals model, but the

combinations producing the smaller RMSE also fit

the data better to an extent that justifies, we believe,

using different kernel combinations depending on the

case. Even though the RMSES of the bad-fitting ker-

nel combinations are not much higher than those of

the best-fitting combinations, the fits produced are

not of similar quality. Since cases may be found where

one or the other kernel combination works best, all

should be retained in modeling.

Consequently, the best-fitting model variant in

terms of the RMSE is chosen for the subsequent anal-

ysis. Table 1 identifies the best kernel combination

and the band-averaged RMSE for each data set found

from the inversion. In two cases, the best fit was ob-

tained when the observations were modeled purely

from volume scattering.

Correlation Between Modeled and Observed

Data

For each data set the correlation coefficient be-

tween modeled and observed reflectance is calculated

in the red and the near-infrared. The results are also

shown in Table 1. In the red band, nearly half of

all data sets, 12 of 27, had correlation coefficients

larger than 0.9; 18 of 27 had coefficients larger than

0.8; and 23 of 27 sets had coefficients larger than

0.75. Only one set had a correlation coefficient less

than 0.7, which will be explained later. In the near-

infrared, the fits are even better. Half of all sets, 13

of 27, have correlation coefficients larger than 0.9. 23

of 27 have coefficients larger than 0.8, and 26 of 27

have coefficients larger than 0.75. These values in-

dicate a reasonable agreement between the modeled

and observed values.

Scatter plots of modeled versus observed reflectance

are shown in Figure 3. For each of four different land

cover types, bare, forest, broadleaf crops, and grasses,

the data with the best correlation coefficient and the

data with the worst correlation coefficient are shown

to demonstrate the range of results obtained. The

bare soil is modeled quite well in both cases, with

correlation coefficients over 0.9. For the other land

cover types, the good fits are excellent while for the

ones with lower correlation coefficients display some

scatter of points away from the diagonal. In the case

of the pine forest, it is probable that the insufficient

handling of multiple scattering by the kernels, which

approximate it as being isotropic, causes the prob-

lems. An isotropic approximation to multiple scat-

tering may be reasonable for sparse canopy cases, but

the pine forest has a coverage of 70% and the data

were obtained at four sun zenith angles ranging from

26° to 74°. The effect of multiple scattering may be

expected to be large. We will later show that an im-
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provement of the multiple scattering treatment of the

model will indeed improve this fit.

In the broadleaf crop class, the corn dat a produces

the worst fit, with a correlation coefficient in the red

of 0.47. However, these data are extremely noisy, ei-

ther due to problems during the measurement or due

to actual local peculiarities of the canopy viewed that

are probably not relevant on the larger scale of satel-

lite remote sensing. Figure 4 plots a part of these

data in the red to illustrate the point; the results for

this data cannot be taken as typical in any way, or

as testing a model. The unsystematic change of re-

flectance observed in the red band is not present as

strongly in the near-infrared band, which promptly

produces a better fit, the correlation coefficient be-

ing 0.75. Roujean et al. (1992), testing their model

on this data set, also found correlation coefficients of

the same magnitude, 0.37 and 0.73. Consequently,

instead of this data set, Figure 3 displays the next-

worst fit for a broadleaf crop, that for soybean data

(Kimes).

A similar situation is encountered with the worst

example of a fit to grass-like vegetation, where the

grass observed by POLDER has a correlation coeffi-

cient in the near-infrared that is singularly small. It

is possible that registration errors cause noisiness in

the data in this case. Here, as in the corn data case,

the fit is greatly improved when in inversion different

weights are given to individual observations, these

weights having been chosen according to the distance

each data point has from the local mean. The next-

worst typical case, shown in Figure 3, is the lawn data

set (Kimes).

The overall conclusion is that, with the excep-

tion of the two data sets mentioned that have other

problems and should be treated with caution, all land

cover types investigated may be reasonably well rep-

resented by the Ambrals BRDF model. From Fig-

ure 2 one may note that different shapes of the BRDF

are represented, such as ones with a hotspot (field,

annual grass) or a bowl shape (irrigated wheat, hard-

wood forest ).

This paper is concerned only with the Ambrals

model, but it is interesting to see how it compares

ble 1 cannot be directly compared with values pub-

lished for the RPV model, since the orginal publica-

tion (Rahman et al., 1993) is not based on the modi-

fied version, whereas the publication using the modi-

fied version (Engelsen et al., 1996) postprocessed the

data sets used to correct for diffuse skylight, a method

not employed in this study to avoid using a standard

atmosphere for data sets collected under various con-

ditions. Therefore, table 2 gives RMSES and correla-

tion coefficients for the datasets measured by Kimes

and co-workers for the Ambrals and the RPV model

in direct comparison. In terms of the band-averaged

RMSE, the Ambrals model has a lower RMSE in 9

out of 11 cases, the other two being ties. The av-

erage RMSE from the Ambrals model is 0.034, that

from the modified RPV model 0.041, or 20 percent

more. In terms of the correlation coefficient, in the

red band, the Ambrals model produces better cor-

relation between measured and observed reflectance

for 8 of 11 data sets, with one tie. In the near-infrared

band, Ambrals produces better fits in 9 of 11 cases,

also with one tie. Judged by this particular series

of data sets, the Ambrals model seems to be some-

what better. In many cases, however, the differences

are not large. The modified RPV model clearly is

similarly capable of also generating good fits to the

data.

IMPROVED TREATMENT OF MULTIPLE

SCATTERING

In the kernel-driven semiempirical modeling approach,

multiple scattering is generally assumed to be isotropic,

covered by the isotropic constant of the model. In re-

ality, however, multiple scattering is dependent on

the sun zenith angle. In some applications, this de-

pendence is weak enough to be ignored, but in others

it is not. When fitting the models to data covering

several different sun zenith angles, problems may oc-

cur.

We study this problem further by using a fourth

kernel term in the models to describe the sun zenith

angle dependence of multiple scattering more explic-

itly. This kernel, the Hapke kernel, is derived from

wit h one other semiempirical model, the three-parametetheory put forward by Hapke ( 1981 ). Based on the

RPV BRDF model developed by Rahman et al. (1993) fundamental principles of radiative transfer theory,

and modified by Martonchik ( Engelsen et al., 1996). Hapke derived an analytical equation for the bidirec-

The RMSES and correlation coefficients given in Ta- tional reflectance function of a semi-infinite medium.
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The single-scattered radiance is derived exactly. A POSSIBLE IMPROVEMENTS TO THE

two-stream approximation is used to calculate the INVERSION PROCESS

multiply scattered radiance of isotropic scatterers.

From the resulting expression, a kernel is derived that This paper has shown that all 27 data sets used were

has the following form: fitted well by at least one of the four kernel combina-

tions that comprise the Ambrals BRDF model. This

RH =
l–{i=z

(5) model may be used reliably for correcting angular
1 + 2 cos(oi)JG’ effects in remote sensing applications. The capabil-

where w is the single-scattering albedo. ity of the model to describe bidirectional reflectance

Since w cannot be a free parameter if this term is properties of surface objects can be further used to

to be used in a kernel-driven model adhering to the infer basic properties of the land covers viewed.

form given by equation (2), it is set to fixed values However, the inversions could perhaps be further

in each wave band, here chosen to be 0.08 in the red improved in future work by considering the follow-

and 0.8 in the near-infrared. ing factors. Firstly, the data used are field-measured.

This term is dissimilar to the other kernels and Radiation reaching the earth surface includes both di-

may therefore be used in a 4-parameter BRDF model. rect and diffuse radiation owing to atmospheric scat-

Figure 5 compares inversion results from the 3-paramete@ingl ‘hich ‘esults ‘n a Partial smoothing of bidi-

and the corresponding 4-parameter model for several

different data sets using scatter plots. For sparse

vegetation, here represented by hard wheat (cover-

age is only 11 percent) and steppe grass (coverage 5

percent ), no difference is observed between modeling

with and without the Hapke kernel. This is expected,

since multiple scattering plays only a negligible role

for sparse vegetation. For dense vegetation, however,

the accuracy of the fits increases. Coefficients be-

tween modeled and observed reflectance increase in

both the red and the near-infrared bands, for example

from 0.775 to 0.880 in the red and from 0.715 to 0.804

in the near-infrared for the pine forest data set. For

the lawn grass, the increase is from 0.724 to 0.787 in

the red, and from 0.835 to 0.955 in the near-infrared.

Similar results apply to the soybean data set. These

results demonstrate that in cases of dense vegetation,

adding one parameter related to multiple scattering

can improve the fit quality of the model, whereas no

change is achieved for sparse vegetation.

Caution should be used when applying the Hapke

kernel to reflectance data remotely sensed from space.

The Hapke kernel depends on a determination of the

solar zenith angle dependence of the reflectance. How-

ever, in many remote sensing applications no range

or just a rather small range of solar zenith angles is

available in a particular period of time, for example

for AVHRR, MODIS or MISR. As a consequence, the

weight of this kernel will be ill determined for such

applications. A 3-parameter model will allow more

stable ret rievals.

rectional reflectance. The data could be corrected

for this effect where atmospheric characterization is

available for the respective times and locations when

the measurements were made. Using a standard at-

mospheric model could be considered in the absence

of such data (Engelsen et al., 1996).

Secondly, the error function used in model inver-

sion has an important influence on the resulting fits

and the choice of kernels used. The weights IVj (see

equation (3) qualify the contribution of every mea-

surement to the error function. This may be used to

improve the inversion, for example when a data set

with nonuniform angular sampling displays a clus-

ter of observations in a particular angle range. Most

of the clustered observations do not contribute to es-

tablishing the shape of the BRDF but affect the error

function unless they are given a smaller weight. Sim-

ilarly, if a particular observation out of a set is con-

sidered to be noisy, the information it contributes to

the inversion should be lessened by giving it a small

weight. One possible way to approach this problem is

to select a suitable weight for each observation based

on an initial regression analysis. That is, the model

is first inverted using the same weight for all observa-

tions, then weights are attributed to each observation

according to a statistical criterion that identifies out-

liers, then the inversion is repeated. A different ap-

proach is to use error functions that are inherently

more stable against noise and outliers (Tarantalo,

1987).

The problem of how to weigh the RMSES achieved
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in individual bands for deriving a band-averaged RMSE inversions were carried out on each pixel.

on which to base kernel selection has already been

mentioned. Whether the difference in the magnitude

of reflectance in the visible and in the infrared wave-

length regions should enter the error function in form

of a weighting term depends on whether a relative

deviation (implying larger absolute errors in the in-

frared) or an absolute error (implying larger relative

errors in the red) are preferable. Large relative er-

rors are less favorable for deriving albedo from the
BRDF, large absolute errors for deriving small re-

flect ante values. In the present study, this problem

is also visible in that the kernel combination best fit-

ting both bands simultaneously is the combination
fitting the near-infrared band for all 11 data sets by

Kimes and co-workers, whereas it is also the best-

fitting combination for the red band in only 7 of the

11 cases (and second-best fitting in 3 other cases).

Thus for at least some types of vegetation, a suit-

able weight value should be added to the individual

bands to avoid biasing the kernel selection towards

the near-infrared reflect antes.

Finally. the Li-kernels used contain two kernel-

internal parameters describing crown shape and rel-

ative height that were each set to fixed values for

sparse and dense canopies based on general consider-

ations. If prior structural knowledge for specific land

cover types is available, these parameters could be

set to more appropriate values than the current ones.

Wanner et al. (1995a) show that the crown shape in

particular has an influence on BRDF shape.

MODELING BRDF EFFECTS IN AN

ASAS IMAGE: A DEMONSTRATION

We demonstrate operation of the Ambrals model on a
remotely sensed data set acquired by the airborne Ad-

vanced Solid-State Array Spectroradiometer (ASAS)

(Irons et al., 1991) over the Walnut Gulch area in Ari-

zona. Multiangular observations were acquired dur-

ing overflights at a sun zenith angle of 38° and in

the solar principal plane. The ASAS instrument was

set up to acquire seven discrete images of the area at

zenith angles 15°, 30° and 45° both forward-looking

and aftward-looking, and at nadir. The ground spa-

tial resolution at nadir was 2.01 m along the flight

direction and 4.25 m across. All images were regis-

tered to the nadir image, and Ambrals model BRDF

Figure 6a shows a spatial mosaic composite of

three bands with center wavelengths of 549, 661, and

787 nm. The right half of the image is the data

acquired at 45° zenith angle in the backscattering

direction, where the sun is behind the sensor. The

left half of the image is data acquired at 45° forward

scattering zenith angle, where the sensor is facing the

sun. For obvious reasons, more shadows are visible in

the image showing the forward-scattering reflectance

(left half) than in the image showing the backscatter-

ing reflect antes (right half ). A clearly visible seam

runs through the image where the data from the two

different viewing directions meet. This seam illus-

trates the magnitude of the BRDF effect present in a

surface such as this one if not removed. Clearly, angu-

lar effects would have an impact on land cover classi-

fication and image interpretation if they were not cor-

rected. Seams like this are known from AVHRR data

in areas where data from different orbits, implying

different viewing geometries, are mosaicked together

(see Li et al. (1996) for an example and discussion),

and will also occur for the similarly cross-track scan-

ning MODIS instrument.

After fitting the Ambrals model to the string of 7

bidirectional reflectance available for each pixel, the

model was used in forward mode to predict the re-

flectance for the left half of the image for the backscat-

tering view zenith of 45°, corresponding to the angle

at which the right half of the image was acquired. If

the Ambrals model fails to correctly model the BRDF

seen, the predicted reflectance and the resulting im-

age will be noisy or the seam will be still visible. How-

ever, Figure 6b shows the composite, where the left

half is the forward-modeled data and the right half

is the same data as shown in Figure 6a. The seam

is gone. Shadows vanish where they should as the

model takes the reflect antes into the hot spot. In-

stead of shaded backsides, illuminated front sides of

objects and slopes are now visible, This demonstrates

once more that the Ambrals model is indeed capable

of modeling correctly the reflectance observed.

Figure 6C shows the nadir reflectance predicted for

each pixel by the Ambrals model where the inversion

is carried out using the 6 bidirectional reflectance

excluding the nadir observation. Figure 6d shows for

comparison the actually observed nadir image. The

two are clearly very similar, illustrating that nadir



106

reflectance can be predicted from a string of observa-

tions at different angles similar to angles applicable

to AVHRR and MODIS observations. Again, a fail-

ure of the Ambrals model to produce a reasonable fit

for each pixel would have resulted in a noisy image.

CONCLUSIONS

In this paper, we have analyzed the capability of the

kernel-driven semiempirical Ambrals BRDF model to

provide adequate mathematical descriptions of the

anisotropic reflectance of a variety of natural sur-

faces. Kernel-driven models combine advantages of

physical models and empirical models in that they

are highly adaptable to a large variety of occurring

BRDF shapes, especially to BRDFs of different land

cover types and of mixed pixels, but retain a basically-

physical interpretation of the shapes produced. They

can be inverted analytically through matrix inversion,

they scale spatially and possess only three parame-

ters, which is probably the maximal number that can

reliably be inverted from the limited angular sam-

pling available from most space-based instruments.

The Ambrals model will thus be used in produc-

ing the global MODIS BRDF/albedo standard data

product.

The mathematical expressions used in the Am-

brals model introduced by Wanner et al. (1995a) are

validated in this paper using 27 different measured

BRDF data sets of a large variety of land covers.

We find that the Ambrals model is fully capable of

modeling these BRDFs with reasonable accuracy, the

RMSES being 0.034 on the average and correlation

coefficients between modeled and observed data be-

ing larger than O.8 or even 0.9 in a great majority

of cases. Furthermore, the kernels selected may ten-

tatively be related to vegetation structural charac-

teristics, with differences observed bet ween shadow-

casting canopies and those where mutual obscuring

of objects occurs, and between shadow-casting and

strongly volume-scattering canopies. While several

avenues for further improving the inversions have been

discussed, the models in their current form are well-

developed enough to be applied to remote sensing

problems involving the extraction of the BRDF and

the correction of multiangular imagery.
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Table 1: Summary of Dat a Sets, Kernel Selection, Inversion RMSES and Correlation Coefficient (r) Between

Modeled and Observed Reflectance

Data Source Cover Type CoV. % LAI f?i, Range Best-Fitting Kernel RMSE r (red) r (N]

Kimes (1983), Plowed Field
Kimes et al. Corn
(1985, 1986) Lawn Grass

Soybeans
Hardwheat
Annual Grass
Steppe Grass
Irrigated Wheat
Orchard Grass
Pine Forest
Hardwood Forest

Ranson et al. Soybeans
(1985)

Deering
et al.
(1995)

Irons et al
(1992)

FIFE (Walthall
and Middleton, 1992)

POLDER

Aspen
Old Black Spruce
Old Jack Pine

Soil I
Soil II
Soil III

Grass I
Grass II

Grass
Sorghum
Vineyard
Vegetable
Sunflower

00
25 0.65
97 9.9
90 4.6
11

4
r

7; 4.0
50 1.0
70
79

72 3.0
83 3.9
99 2.9

00
00
00

1.3
0.9

26-45
26-68
42-70
28-76
27-51

28-50

35-63
26-59
45-82
26-74
25-79

20-49
21-38
31-61

45-59

36-59
34-60

16-68

34-53
28-54

19-25

53-61

37-47
38-45
38-45
37-45
38-47

Ross-thick/Li-sparse
Ross-thin/Li-dense
Ross- thin/Li-dense
Ross-t hick/ Li-sparse
Ross-thick/Li-sparse
Ross-thick/Li-sparse
Ross-thick/Li-sparse
Ross-thick
Ross-thick/Li-sparse
Ross- thin/ Li-dense
Ross-thick/Li-dense

Ross-t hick /Li-sparse
Ross-thin/Li-dense
Ross-thick

Ross-thick/Li-sparse
Ross-thick/ Li-sparse
Ross-thin/Li-dense

Ross-thick/Li-sparse
Ross-thick/Li-sparse
Ross-thick/Li-sparse

Ross-thin/Li-sparse
Ross-thin/Li-sparse

Ross-thick/Li-sparse
Ross-thin/Li-sparse
Ross-thin/Li-sparse
Ross-thin/Li-sparse
Ross- thin /Li-sparse

0.016
0.028
0.046
0.043
0.019
0.023
0.024
0.037
0.030
0.041
0.030

0.017
0.015
0.011

0.025
0.011
0.010

0.027
0.016
0.027

0.021
0.031

0.042
0.028
0.024
0.036
0.023

0.976
0.467
0.724
0.783
0.963
0.945
0.887
0.911
0.837
0.775
0.902

0.753
0.738
0.914

0.922
0.949
0.899

0.920
0.971
0.931

0.769
0.913

0.706
0.785
0.809
0.888
0.869

0.976
0.75C
0.835
0.806
0.938
0.878
0.922
0.917
0.914
0.715
0.89C

0.892
0.851
0.927

0.883
0.943
0.947

0.915
0.97C
0.933

0.896
0.89S

0.560
0.874
0.934

0.793
0.91C
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Table 2: Comparison of Inversion RMSES and Correlation Coefficients (r) Between Modeled and Observed

Reflectance for the Ambrals Model and the Modified RPV Model

Data set Ambrals mod. RPV

(Kimes) RMSE r (red) r (NIR) RMSE r (red) r (NIR)

Plowed Field

Corn

Lawn Grass

Soybeans

Hardwheat

Annual C,rass

Steppe Grass
Irrigated Wheat

Orchard Grass

Pine Forest

Hardwood Forest

0.016

0,028

0.046

0.043

0.019

0.023

0.024

0.037

0.030

0.041

0.030

0.976

0.467

0.724

0.783

0.963

0.945

0.887

0.911

0.837

0.77.5

0.902

0.976

0.750

0.835

0.806

0.938

0.878

0.922

0.917

0.914

0.715

0.890

0.016

0.031

0.046

0.057

0.025

0.028

0.026

0.039

0.050

0.049

0.044

0.976

0.718

0.706

0.871

0.941

0.911

0.883

0.891

0.796

0.659

0.864

0.976

0.652

0.839

0.600

0.897

0.822

0.897

0.907

0.723

0.560

0.890
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Figure 1: RMSES of Ambrals model inversions for selected data sets representing different types of land

covers (barren, sparsely vegetated, grass-like, forest, broadleaf crops; refer to Table 1 for coverages and

LAIs). Kernel combinations are keyed as follows: NS, Ross-thin/Li-sparse; KS, Ross-thick/Li-sparse; ND,
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Figure 2: Comparisons of fits produced by good (solid lines) and bad (dashed lines) Ambrals kernel combi-

nations on the principal plane and on the principal cone for selected data (dots) representing different types

of land cover.
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fits (solid lines). The situation is similar at other zenith angles in the red, and somewhat better in the

near-infrared.



Validation of kernel-driven BRDF models 115

3–parame~er, Hardwheat

l@~

4–pnrameter, Hardwheot

‘“”~

00 o? 0.4 06 0.8 1 ,8

Model R

oo~
0.0 02 0.4 C,6 08 Ic

Model R

~–parameter, Steppe Grass

lo~

00 02 04 0.6 0.8 ‘ 2
~JOdel R

~–porometer, Soy becns

lo~

00 0.2 04 06 08 1.0

Uodel R

3–parameter, Lawn Grass
1.0

~ 0.8

,-
00<
0.0 ~~ I0406081C

MOael R

3–parame?er, Are Forest
Ic

~ 0.8}

?06
3

:04
:

u ,,775, @715

4–parameter, Steppe Grcss

1.0 /’”
~ 0.8 L

P 06

:
0 04 -
u 0.888, 0923

00

0.0 02 04 0.6 0.8 1,0

Model R

4–porometer-, Soybeans
101

/’
~ 08

K

. .
....

!?06
.“.. .

..- . . .
3 .*” . .-:.
: 04 . . .. .

.. . 0824, 0 8?$9

g 02 .

00 “

0.0 (3.2 0.4 06 08 10

Model R

4–parameter, Lawn G-css

1,0

~ 08 -

? 0.6
:
0 ,3.4

2
3.2 –.

3.0

00 02 04 06 08 10

Model R

4–parameter, P ‘e Fcres:

1.0

~ 0.8-

? 0.6-
:0 0.4 -
u 0880, 0804

00

O.cl 02 04 0.6 Cle 10

Model R

Figure 5: Modeled versus observed reflectance in the red and near-infrared for different types of land cover

(top two rows: sparse vegetation; bottom three rows: dense vegetation) and for a 3-parameter model (left)

and a 4-parameter model (right) where the Hapke-kernel for multiple scattering was added. The numbers

given in each panel are the correlation coefficient in the red and in the near-infrared bands, respectively.

Note that fits improve for the dense vegetation.
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gure 6: Grey-scale representation of a three-band composite image of ASAS data ( wavebands centered

549, 661, and 787 nm) over Walnut Gulch, Arizona. Sun zenith angle during data acquisition was 38°.

mel (a) (top left) shows in the right half data acquired at 45° zenith angle in the backseat tering direction

ld in the left half data acquired at 45° zenith angle in the forward-scattering direction, where more shadows

e visible. The second panel, (b) (top right), shows in its left half the same data as shown in the left half

panel (a), and in the right half data predicted for a backscattering view zenith angle of 45° using the

mbrals model on each pixel and inverting the seven reflectance observed by ASAS at 45°, 30°, 15°, and
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